Efficiency Bounds for Semiparametric Estimation of Quantile Regression under Misspecification

نویسنده

  • Ying-Ying Lee
چکیده

Allowing for misspecification in the linear conditional quantile function (CQF), we calculate the semiparametric efficiency bound for the solution to the population quantile regression (QR) problem or the best linear predictor for a response variable under the asymmetric check loss function. The pseudo-true QR parameter that solves a non-differentiable unconditional moment restriction is interpreted explicitly by Angrist, Chernozhukov, & Fernández-Val (2006) as the best weighted meansquared linear approximation to the true CQF. Alternatively, the QR parameter for the misspecified linear projection model can be understood by the orthogonality condition of the covaritates and the distribution error, i.e., the deviation of the true conditional distribution function, evaluated at the approximated quantile, from the true probability. This suggests that even though the CQF is nonlinear in the covariates, the sample analog estimator by Koenker & Bassett (1978) semiparametrically efficiently estimates a pseudo-true parameter that offers meaningful descriptive statistics for the conditional distribution of the dependent variable. These properties, analogous with ordinary least squares, reinforce our understanding of QR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpretation and Semiparametric Efficiency in Quantile Regression under Misspecification

Allowing for misspecification in the linear conditional quantile function, this paper provides a new interpretation and the semiparametric efficiency bound for the quantile regression parameter β(τ) in Koenker and Bassett (1978). The first result on interpretation shows that under a mean-squared loss function, the probability limit of the Koenker–Bassett estimator minimizes a weighted distribut...

متن کامل

Efficient Semiparametric Estimation of a Partially Linear Quantile Regression Model

This paper is concerned with estimating a conditional quantile function that is assumed to be partially linear+ The paper develops a simple estimator of the parametric component of the conditional quantile+ The semiparametric efficiency bound for the parametric component is derived, and two types of efficient estimators are considered+ Asymptotic properties of the proposed estimators are establ...

متن کامل

Semiparametric Quantile Regression Estimation in Dynamic Models with Partially Varying Coefficients∗

We study quantile regression estimation for dynamic models with partially varying coefficients so that the values of some coefficients may be functions of informative covariates. Estimation of both parametric and nonparametric functional coefficients are proposed. In particular, we propose a three stage semiparametric procedure. Both consistency and asymptotic normality of the proposed estimato...

متن کامل

Bayesian semiparametric additive quantile regression

Quantile regression provides a convenient framework for analyzing the impact of covariates on the complete conditional distribution of a response variable instead of only the mean. While frequentist treatments of quantile regression are typically completely nonparametric, a Bayesian formulation relies on assuming the asymmetric Laplace distribution as auxiliary error distribution that yields po...

متن کامل

Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals

For semi/nonparametric conditional moment models containing unknown parametric components (θ) and unknown functions of endogenous variables (h), Newey and Powell (2003) and Ai and Chen (2003) propose sieve minimum distance (SMD) estimation of (θ, h) and derive the large sample properties. This paper greatly extends their results by establishing the followings: (1) The penalized SMD (PSMD) estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009